

Mobile Interactive Image Sonification for the Blind

Torsten Wörtwein, Boris Schauerte, Karin Müller, and Rainer Stiefelhagen

Study Centre for the Visually Impaired Computer Vision for Human-Computer Interaction Lab

www.kit.edu

Motivation

- Worldwide 39 million blind people (WHO)
- Majority of blind people lives in developing countries
- Lower costs for mobile computers than embossers: tablet US\$100-500 vs tactile embosser US\$1,5K-150K

Aims

- Sonification of own images
- Accessible from everywhere
- Support for:
 - Mathematical function plots
 - Bar charts
 - Floor maps

- Investigate web-based sonification with various techniques
- Support for Web Audio and vibration API

Karlsruhe Institute of Technology

Related Work

- Sonification
 - Instrumental and vocal [Banf, et al. 2012]
 - Synthetic sound [Cavaco, et al. 2013]
- Interaction
 - Non-interactive [Meijer, 1992]
 - Interactive [Hermann&Hunt, 2005]
- Method
 - Crowd sourcing [Bigham, et al. 2010]
 - Computer vision and image processing [Schauerte, et al. 2014, 2015]
- Medium
 - Stationary devices
 - Mobile devices [Bigham, et al. 2010]

Experiments

Three tasks:

- (1) Identify or precisely describe mathematical functions
- (2) Precisely describe bar charts
- (3) Find and describe the path between two rooms
- Six blind participants
- Method
 - Baseline for time: comparison with tactile graphics

- 3 5 stimuli per task: in random order and with variations
- Evaluation scores: success, time, and usability

Task 1 – Identify Mathematical Functions

Used functions: linear, parabola, sine function, exponential function, hyperbolic function

Distance sonification

- Hear approximated Euclidean distance to graph
- Higher frequency, further away
- Free 2D exploration

Value sonification

- Hear the function value
- Higher frequency, higher function value
- Horizontal 1D exploration

Study Centre for the Visually Impaired

Computer Vision for Human-Computer Interaction Lab

Task 1 - Results: Identify Math Functions

- Most participants did not know how a function "looks" like
- Functions: value sonification is better (faster, equally successful, better usability) than distance sonification

Task 2 – Describe Bar Charts

Semantic sonification

- Each bar different frequency
- Discrete frequencies
- Free 2D exploration

Value sonification

- Height of bars
- Discrete frequencies
- Horizontal 1D exploration

Study Centre for the Visually Impaired

Computer Vision for Human-Computer Interaction Lab

Task 2 – Results: Describe Bar Charts

Semantic sonification provides all information but slow.

Value sonification fast, but only rough estimation of height

Task 3 – Floor Maps: Semantic sonfication

Semantic sonification

- Semantic entities (walls, rooms,...) are represented by different frequencies
- Start and target rooms share the lowest frequency
- Walls have the highest frequency
- Free 2D exploration (discrete frequencies)

Task 3 – Floor Maps: Guided sonification

Guided sonification

- A path between the two rooms is computed, the further you are away from the path, the higher the frequency ("the tone is guiding the way")
- Start and target rooms and the exact path share the lowest frequency
- Walls have the highest frequency
- Free 2D exploration (continuous frequencies)

Task 3 – Results: Find a way on Floor Maps

Floor maps: semantic sonification is faster than guided sonification

In general, it is still a demanding task

Study Centre for the Visually Impaired Computer Vision for Human-Computer Interaction Lab

Conclusions & Future Work

- We investigated three tasks with two sonification methods
 - Identification of mathematical functions
 - Bar charts
 - Way finding on floor maps
- Compared to the baseline (tactile graphic) participants need more time for all tasks
- Mathematical function: value sonification is comparable
- Vibration pattern considered helpful to determine borders of image
- Trend: less degrees of freedom, better usability (1D vs. 2D exploration and discrete vs. continuous frequencies)
- Future Work: Investigate vibration patterns for other tasks; Decrease audio delay; Allow multi-touch